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1. Phyn. A: Math. Gen. 28 (1995) 2889-2904. Rinted in the UK 

BRS symmetry in Connes’ non-commutative geometry 

B E Hadont and G C Joshig 
t KEK Theory Group. Tsukuba, Ibaraki 305, Japan 
$ Research Centre for High Energy Physics. School of Physics, University of Melboume, 
Parkville. Victoria 3052. Australia 

Received 24 October 1994, in final form 21 February 1995 

Abstrad. We extend the B R ~  and anti-BRS SyMnehy to the two-point space of Comes’ non- 
commutative model building scheme. The constraint relations are derived and the quantum 
Lagrangian consrmcted. We find that the quantum Lagrangian can be written as a functional of 
the C U T V ~  for symmeuic gauges with the BRS. ant i -n~s auxiliary field finding a geomevical 
interepretation as the extension of the Higgs scalar. 

1. Introduction 

Non-commutative geometry has emerged as a promising model building prescription 
providing a possible underlying structure to the appearance of Higgs scalars with point-like 
interactions and quaaic curvatures. As the name suggests, this is achieved by generalizing 
the underlying notion of geometry as applied to particle physics. This generalization is 
suppated by the Gelfand-Naimark theory: let A be a C’dgebra with unity, then if A is 
commutative it will be isomorphic to the algebra of all continuous complex-valued functions 
Cm(X), defined on a compact topological space, X. Thus, rather than the manifold itself, 
one addresses the algebra of smooth functions defined over it, which is equivalent. A 
differential calculus is then constructed on Cm(X). This provides a very convenient way 
to generalize the topological space, X, in a sense linearizing the description of complicated 
or ‘badly behaved’ spaces. 

There is more than one approach to implementing this geomehic view. One perspective, 
developed by Dubois-Violette, Kemer and Modore 111, extends the set of complex smooth 
functions over space-time to include complex matrices, i.e. C m ( M )  + C m ( M )  @ Mn(C); 
M being space-time and M.(C) the set of n x n complex matrices [I]. It is in this sense 
that the geomebic prescription is non-commutative; see also B a l W h n a  et al 121. The 
important aspect here is that the differential calculus is developed on the entire algebra so 
one does not simply yield matrix-valued forms. Indeed Higgs scalars emerge as generalized 
1-forms valued in the derivation algebra of M,(C). This is reminiscent of BRS analysis in 
normal gauge theory, indicating perhaps a deeper underlying assosciation. 

The non-commutative model building scheme which will be of particular interest in 
this paper is that developed by Connes 131; see also Connes and Lott [4,51 as well as 
Chamseddine et a1 [a] who reformulated this approach to include GUT models. Connes 
generalized the geometric prescription by extending the algebra of smooth functions to 
include a two-point space, thus e.g. Cm(M) + Cm(M) Cm(M) .  Gauge fields arise 
as appropriately defined fibre bundles on each copy of space-time, while Higgs scalars 
appear as connections between these copies. In this way the symmetry breaking scale 
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receives a geometrical interpretation, being just the inverse distance between space-times. 
This construction places severe restrictions on the models which can be constructed. 
For instance, flavour chirality is essential. Furthermore, survival of the Higgs potential 
demands the existence of multiple, non-degenerate, fermionic families. This is an intriguing 
correspondence with phenomenology 171. It also appears that constraints upon the Higgs and 
top quark masses appear at the classical level [SI. This is a natural consequence of entering 
fermionic data into the model as a starting point towards reproducing observed behaviour. 

The standard model constructed by Connes and Lon is a remarkable success of this 
model building prescription 151. Nevertheless, a quantum theory is still lacking. This 
state of affairs is not unreasonable given the inhinsically new setting of this approach. 
Indeed connections with quantum theory are now emerging, perhaps suggesting that the 
non-commutative settings are fundamentally quantum mechanical [9]. On a less ambitious 
level, however, it appears that the constraints imposed by non-commutative geometry do 
not survive quantum corrections [lo]. This is a common symptom of such ‘Kaluza- 
Klein-lie’ model building schemes (see also the connection with coset space dimensional 
reduction [ll]). However, given the novelty of this geometric description, it is not 
unreasonable that an additional symmetry or some more exotic mechanism exists in which 
quantum corrections are consistent [12]. In this context an intrinsic quantum mechanical 
connection is indeed compelling. 

The failure of the non-commutative model building constraints to survive quantum 
corrections was demonstrated in only the simplest possible Abelian model (the standard 
model evolution was shown, tentatively, to be slow [lo]). Given that the quantum connection 
has not, nevertheless, been satisfactorily resolved we wish, in this paper, to extend to non- 
Abelian models and consider the non-commutative implementation of BRS 5ymmetry in 
Connes’ model building scheme. Independently of providing a possible framework for 
quantizing such models, we seek to generalize the gaugefixing mechanism at the classical 
level. This is made possible by the geometric origin of the BRS and  anti-^^^ constraints [13]. 
Since in non-commutative geometry the Eggs  scalar appears on the same level as gauge 
fields we have a conceptually simple means by which matter fields may be included in the 
notion of BRS symmetry. This is compelling if one recalls the important role that Eggs  
scalars play in interesting soultions of Yang-Mills fields, such as monoploes. We find 
that the extended geometric setting of non-commutative geometry provides a framework in 
which a unified description may be derived with a more adequate geometrical interpretation 
of the B R S / ~ ~ ~ ~ - B R S  scalar emerging. 

2. Non-commutative gauge theory 

We will briefly overview the model building prescription of non-commutative gauge theory 
to set the mathematical formalism. While new perspectives to quantum theory are expanding 
the motivation for this approach [9, 1 I] the original motivation was geometric and we shall 
introduce the scheme in this setting. 

To generalize the Riemannian metric the notion of geodesic distance must be consistently 
incorporated and this is encoded in the concept of a K-cycle. A K-cycle over the involutive 
algebra, B say, is a *-action of B by bounded operators on a Hilbert space X, denoted 
by p,  and a possibly unbounded, self-adjoint, operator D ,  denoted Dirac operator, such 
that [ D , p ( f ) ]  i s  a bounded operator Vf E t3 and (1 + D2)-’ is compact. Let X be 
a compact Riemannian spin manifold, 3 the algebra of functions on X and (XF, 3) the 
Dirac K-cycle with XF = L2(x, ,&ddx) of 3. Denote by ys the fifth anticommuting 
Dirac gamma matrix, the chirality operator, defining a 2 2  grading on XF. Similarly a K- 
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cycle can be defined on the discrete set representing the internal space. Let A be given by 
A = M,(C) 8 Mp(C) Q .. . corresponding to the Hilbert spaces Cn, CP, . . . , respectively. 
(Altematively, one may define an n-point space A = Cm(X) Q Cm(X) e.. . and introduce 
an appropriate vector bundle E = eAP, p E Z, where e is a projection. The algebra A and 
the vector bundle E then act together to define the required gauge groups on each copy of 
space-time [5]). For a two-point space the Dirac operator takes the form 

D = (  ;*:) 
where M is a mass matrix of size dim31~ xdimli~, where 31 = 'HL Q 3 1 ~  decomposes 
under the action of a suitable chirality operator 

For a product geometry At = F 8 A a product K-cycle is naturally defined with the 
generalized Dirac operator 

Dr = Y@ 1 f y s 8  D .  (3) 

d ( p , q ) = s u ~ l l p ( f ) - q ( f ) l :  f ~ E l l l D , f l l l <  1). (4) 

For any C*-algebra a K-cycle will define a metric d on the state space of U by 

Recall that now the points p and q are states on the algebra so that p(f) = f ( p ) .  
To make contact with gauge theories a differential algebra must be constructed on U. 

The space of all differential forms &(U) = ePpaN bp(U) is a graded differential algebra 
equipped with a differential operator S such that 

6 : bqu) + BP+'(U) (5) 

62=0. (6) 

along with nilpotency 

The space of p-forms bP(U) is generated by finite sums of terms of the form 

which follows from the relations 

61 = o  S(ab) = (Sa)b + a6b 

with the differential 6 defined  by^ 
S(58al ... Sap) = Sa&l ... Sap. 

Extending the representation of U on 31 to its universal differential envelope *(E) is 

(10) 

achieved via the map 

K : &(a) + B ( X )  

~ ( d a l . .  .Sap) = P(~o)[D,  P ( a ~ ) l . .  . [ D ,  ~ ( a p ) l .  

where B(31) is the algebra of bounded operators on 'Tf definedby 

(11) 
It is this representation on Hilbert space, as a way of connecting with our usual notions 
of spacetime vectors &d scalars, which distinguishes the Comes-Lott model building 
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scheme [SI. The crucial aspect which must be considered, however, is that the representation 
x is ambiguous, with the correct space of forms actually given by 

B E Hanlon and G C Joshi 

S2*(U) = *@)/.I (12) 
where J is given by the differential ideal [4,7 

J =kern +Gkern = @ J P  
P 

where 

Jp = (kern)P +G(kern)P-’. (14) 

d ( B )  = i20(?3) z /I(@ 

Q’(B) = fi’(B)/(kem)’~ z n(i2’(~)) 

ap(@ E n(fip(?3))/n(~(kenr)P-’). (15) 

Degree by degree the correct space of forms becomes 

and for degree p > 2 

When ?3 = F, Q*(B) recovers deRham’s differential algebra of differential forms on X. 
The simplest means by which the quotient may be considered as a subspace is in the 

prescence of a scalar product. This is naturally defined on the internal space by the trace on 
matrices. In the infinite-dimensional case the inner product is defined by the Dixmier trace 

where Q is a bound operator on XF,  d = dimX and An are eigenvalues of Q [  arranged 
in a decreasing sequence discarding the Dirac zero modes. By correspondence with the 
deRham complex on X this reduces to the usual scalar product on X 

(@.e) = 1/8n2/ @* * @, E Qp(W (17) 

incorporating the Hodge star. Since the fermionic fields are the fundamental fields the spinor 
action can be simply written down. 

X 

3. The geometry of BRS symmetry 

As is well known, difficulties arise when covariantly quantizing non-Abelian gauge theories 
from unwanted contributions to the gluon propogator. Transversality and unitarity are spoilt 
in closed-loop diagrams from the longitudinal part of the propogator. To overcome this 
it is first necessary to introduce a constant notion of transversality on the gauge field and 
this is implemented by gauge fixing (up to problems arising from the Gribov ambiguiry). 
Since differing gauges need not be smoothly connected it becomes necessary to restrict to 
an appropriate region of configuration space by choosing a particular representative in some 
equivalence class of gauge related connections. In the functional integral representation the 
Jacobian of this gauge-fixing term can be written in terms of a set of fermionic scalars, 
known as ghosts 1141. Since loop diagrams involving such ghosts will introduce factors of 
(-1) due to their fermionic nature they will ensure the cancellation of unitarity violating 
terms in the perturbation expansion. (In the Abelian case the Ward identities are satisfied 
without the need for ghosts). The gaugefixing term results in the loss of gauge invariance 
for the new ‘quantum Lagrangian’ now consisting of the original terms plus the gauge 
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fixing and ghost contributions. However, a new global symmetry can be defined with all 
the consequences of gauge invariance; this is the BRS symmetry. 

The geomenical origin of the BRS (as well as anti-BRS) invariance was demonstrated 
by Baulieu and Thieny-Mieg by reversing the construction of Yang-Mills theories [13]. 
Gauge fields and ghosts are now introduced as the fundamental independent fields. This 
is motivated by the geometrical description of gauge theories in terms of principal 
fibre bundles, which consist of a base space (space-time with coordinates x )  and fibres 
corresponding to local copies of the gauge group (with coordinates y). A matter field in 
this (x ,  y) space takes the form 

J ~ x ,  Y) = exp(iym~T$)@(x) (18) 
where T, are the generators of the Lie group. T h i s  describes our usual notion of gauge 
transformation. The extension is made when one generalizes the gauge field I-form 
A,@) dx’ to the ( x ,  y) space 

(19) 
where Ci(x,  y) is a scalar field with dx’ and dym spanning the cotangent space of the fibre 
bundle. The ghost field is identified with Ci(x ,  y) dym which anticommute by virtue of 
being differential forms. The  anti-^^^ ghost field can be similarly inmduced by constructing 
a ‘double’ principal bundle with coordinates ( x .  y, 3. This is isomorphic to the product 
of space-time by two copies of the gauge group. However, this is not to be confused with 
the two point space of Connes’ construction [5] as there is no notion of gwdesic distance 
between these copies. The generalized gauge field now becomes 

(20) 

La(x ,  y) = A;(x, y ) d P  + C ~ ( X ,  y)dym 

.&x,Y, i) = AZ(x, y, j9dx’ + CG(x,y,j9dym + G(x. Y. i ) d J ” .  
BRS and anti-BRS equations are now introduced as geome~cal  constraints arising from 
constructing the generalized curvature 

F a  = riti. + 1/2[A, Ay . (21) 
Imposing the k - M a u r e r  condition insurqs compatability of the libration with parallel 
transport, restricting the curvahue to be proportional to dx’ ~ d x ” .  The remaing terms, such 
as dym A dr’, must cancel, thus yielding the required equations. 

The association of this approach to the non-commutative model building scheme of 
Dubois-Violette et a1 [ l ]  should now be clear. Indeed this was directly exploited by 
Balakrishna er a1 [Z]. The difference lies in the interpretation of these new scalar fields as 
being bosonic or fermionic. Extending Connes’ approach then will effectively constitute 
employing both model building directions; that of Connes [3-5] and that of Dubois-Wolette 
er a1 [l]. This has, in fact, been used before to yield sufficiently diverse sets of Higgs 
scalars to accommodate required symmetry-breaking pattems [15]. Importantly, it appears 
that in exploring BRS symmetry we will be exploiting the notion of ‘intemal space’ to its 
fullest limits in deriving a suitable model. 

4. Application to parallel space-times 

That interesting generalizations may emerge from applying these notions to Connes’ 
construction is amply demonstrated by the richness of structure when cohomological 
considerations are directed to non-commutative geometry [16]. As the previous construction 
suggests, we wish to extend our algebraic considerations onto the group manifolds on each 
copy of space-time. This has already been explored by Watamura for quantum groups in 
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the case of one space-time [ 171. This sets the mathematical tone, where on each copy of 
space-time we will restrict ourselves to the classical groups, each extended copy now being 
described by the algebra 
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C"(X @ G) Z C"(X) 8 Cm(G) (22) 
the isomorphism arising due to the local triviality of the principal fibre bundle. Ghosts will 
now appear due to C"(G), G being a compact unitary group. Our analysis will differ in that 
a set of parallel space-times will also introduce scalar degrees of freedom as connections 
between these copies. This brings us to the interesting role that matter fields will now play 
in our analysis. The idea is very simple. As with other model building schemes which 
exploit 'intemal' smcture, the Higgs scalar and gauge fields are recognized as originating 
from a single underlying principal, i.e. they are unified. We propose then to extend the 
scalar contributions in an analogous manner to that of the gauge fields in (20). Thus 

&x. Y ,  9 = m, Y. 3 + B(x, Y, 7) + B(x.  Y .  7). (23) 
The p fields correspond to connections between group manifolds analogously to $, which is 
a connection between space-times. This should arise naturally when the underlying algebraic 
construction is represented on Hilbert space. 

A subtle but important distinction now arises with the model building approach of 
Dubois-Violette et a1 [l]. Strictly they are considering an extension of the differential 
calculus to matrix algebras. However, we are considering the set of smooth functions over 
the group manifolds on each copy of space-time. In this sense the matrix structure serves 
as a local basis against which coordinates on the group manifolds are defined, i.e. on the 
tangent space to the group. We do not seek to construct a derivation algebra on the matrix 
algebra but rather on the coordinates defined locally by the Lie algebra 

To implement the extension we begin at the level of the algebra and generalize the 
differential operator 6 to the set 

(24) 
the subscripts Q and Q are introduced to signify the BRS and mti-BRS operators. As we are 
restricting ourselves to classical groups all mamx elements will be real or complex. We are 
thus strictly dealing with commutative Hopf algebras. The set g satisfy the Leibnitz rule 
where, in order to satisfy nilpotency, the following are also implied 

(25) 

g = (6 ,  6Q, 6s) 

62 = 62 Q -  - 62 0-O - and (6, ~ Q J  = ( 6 . 6 s )  = @Q, 6 0 }  = 0. 

5. The BRS a d  a 6 - B R S  constraints 

Just as Baulieu et a1 [ 131 introduced ghosts as apriori geometrical fields we are considering 
the dynamical fields as existing on an extended notion of manifold described appropriately 
by a smooth algebra. We are thus considering matrix elements 

(26) 
on each copy of space-time. Furthermore, the groups are taken to be compact. Thus we 
can be confident that our generalized connection will be a finite sum of the form 

6 = a'xb' = a'(6 + SQ + 6Q)b' . (27) 

This generalizes our notion of 1-form on the algebra where a;, b' E At, d, being the total 
algebra, 

(28) 

U;X E C"(X @ G) Z C"(X) 8 Cm(G) 

At = C"(X @ GI) @ C"(X @ Gz). 



BRS symmetry in Connes' non-commutative geometry 2895 

Note that we do not assume that G I  = Gz. 
To represent this on Hilbert space we must extend the representation of Connes' 13-51 

onto the group manifolds. This requires constructing a Clifford algebra on the compact 
intemal spaces as extensions of the space-time Clifford algebra. Clearly there are parallels 
here with Kaluza-Klein theory. For an Ndimensional internal manifold this will correspond 
to introducing a Clifford algebra belonging to the group O ( N ) .  This need not be associated 
with the underlying group upon which it is based. Compare this with the construction 
of Baulieu et ol 1131 which follows the same pattem. We need not consider this to be 
a problem when it is recalled that the Clifford algebra is innoduced only as a means to 
represent differential forms. In this sense the physical fields are not valued in thii algebra. 
Such a construction arises from demanding that the ghost fields cany both gauge and intemal 
vector indices. 

Corresponding to the differential operator we write down a Duac operator 

B = D + Q + ~  

Here y5 is the usual chirality operator on four-dimensional space-time, j75 is the 
corresponding operator on the group manifold, ,Tp, p = m, n are the operators on each 
group manifold while is an m x n matrix yet to be specified. Strictly, since j75 anti- 
commutes with the Clifford algebras on both group manifolds we should write p5 = y;f@ y;. 
which will be understood from now on. For clarity we can explicitly set out the K-cycles 
of the model. Writing the total algebra (28) as 

C"(X) @ ( ~ " ( G I )  @ CYGz)) (30) 

the generalization of our notion of internal space becomes clear. The Dirac operator on the 
continuous manifolds takes the form 9 + y5(JP + ?J, operating on the space of square 
integrable functions on spacetime and smooth functions on the group manifolds. The 
functions on the group manifolds have the f o m  u j ~ ( y )  corresponding to matrix elements 
in the space of complex matrices M,(C). On the discrete space we introduce the Dirac 
operator 

acting on the Hilbert space Cm@Cn. The extension of the intemal Dirac operator introduces 
the notion of a connection between group manifolds analogously to that between space-times. 
The K-cycle for both continuous and discrete contributions is now described by the operator 
(29). (Note that the 'product' K-cycle is actually between the classical K-cycle for C"(X) 
and our generalized concept of internal space.) It is important to observe that since O ( N )  
has fundamental group ZZ for all N >.2 there will be no problem in defining the notion of 
spinors on the continuous intemal manifolds for non-Abelian groups. 

Representing the connection 1-form on Hilbert space we have 
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so that 

W )  = 
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p(a')[D + Q f Q. ~ ( b ' ) l  
i 

We thus have ghosts and anti-ghosts for each gauge group (CAJ, CA,B), gauge fields ( A ,  E )  
and now matter fields, q5, with corresponding extensions to ghost and anti-ghost matter fields 
(p,  j )  consistent with the interpretation of q5 as an extended notion of gauge field. Note 
that the Hermiticity requirement on n(&) connects us with the Lie algebra for each group. 

Proceeding as with Baulieu ef ai 1131 we will now consider the generalized curvature, 
imposing the Cartan-Maurer condition to derive the constraints. Using the conditions (25) 
the complexity of this can be greatly reduced. We have the curvature at the level of the 
algebra 

where 
@=&+&* (34) 

B = (6 + S Q  + Bg) ~ ( a ' ( 6  + S Q  + 8p)b') 

= Sa'Sb' f 6ai6Qb' f Sa'Spb' f 6QUi6b' 

+ 6Qa'SQb' + 6Qai8pb' + Spa'6b' f 6gai6Qb' 

+ Gga'Spb' (35) 
terms of the form a'SSQb' vanishing. This illustrates the utility of working on the algebra 
where the calculus is well defined. Using the nomenclature of Baulieu ef ai [13] we set 
to zero the terms of R(@) proportional to dx" A dyp, dx" A dfp, dyP A dyp', dyp A dfp' 
and dyp A dFp', noting that yp are coordinates on one of the two group manifolds. (Note, 
however, that we do not get mixed forms between groups, e.g. dy; A dy; .) Since matter 
fields are also present we will get forms proportional to dyP and dyp, corresponding to the 
covariant derivatives of the matter fields on the group manifold. These are also set to zero. 
We recall that such forms are still 2-forms in the generalized sense of Comes' construction 
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and similarly for SA and .?B. for example, 

S A A ”  = = D p e ~  

S A P  = - C A ( @  f 6) S B B  = ( B  + t)CB (38) 
S A C ,  = -l/z[CA, C A ]  S B t B  = -1/2[CB, C B I  etc 

S X X  + sxcx + [ C x ,  Cxl = 0 

and the cross term 

(39) 

where X = A, B.  Note that we are implicitly working on the correct space of forms not 
having considered the differential ideal J .  That is, we have not exhibited the auxiIiary 
terms which arise in the curvature due to the ambiguity in the representation n[4]. These 
auxiliary terms are crucial for the correct determination of the Higgs potential but do not 
impact on the constraint equations. 

As expected we reproduce the usual BRS and anti-BRS constraints on each gauge group. 
However, we now also have constraints involving the new field b. The element which is 
missing is the Zinn-Justin auxiliary field required to define S X C X ,  which is left arbitrary 
by the constraints. Baulieu et al [I31 introduce this field, 6,  so that 

S C = b  (40) 

and so closing the algebra Rather than introduce a new field we shall propose that the 
role of b is instead taken by ,9. Thii appears to be consistent as ,6 should not appear in 
the physical equations of motion and thus must be treated as auxiliary. Furthermore, we 
now have a means by which the field b, defined in the adjoint of a given gauge group, 
may be decomposed into constituent parts. This is ~a natural consequence of dealing with 
representations on Hilbert space where fermionic eIements are the basic building blocks. 

To recover the Zinn-Justin auxiliary field we apply the constraints (37) so that (passing 
to the symmetric phase B = ,4 + E )  

so that in this case b = Bp. Similarly, 

so for the B gauge field sector we have the identification b = PB. (An alternative is to 
identify the A and B gauge fields. The B fields are then necessarily in self-adjoint m x m 
representations of the gauge group [6]. It follows then from the constraints (37) that 

sg = 1/2[B, C ] .  (43) 

The factor of f is spurious since we should strictly make this identification at the level of 
the connection, not the constraints. This approach, however, is not a preferred option as it 
can be shown that then 

z(s&era)’) = o (44) 
on the intemal space and as a result one will no longer yield a Higgs potential in asymmetry- 
breaking form [lS]). In our construction we also have the ‘charge conjugate’ field B. We 
can, AS above, construct the conjugate auxiliary field. The most general such term which 
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we can construct has the form b = (6 + ;)(b + ;)* + (6 + 
the constraints that 
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+ ;). It follows from 

Sx(b) = [b, Cxl 3x(b)  = [b,  E x ] .  (45) 

SxCx b SxCx = -b - [ex, C x ]  . (46) 

Note that it is not necessary to keep track of which gauge sector we are considering since, 
for example, 

We now make the identification 

S A @ j )  = ( S A P ) $  +'PsAj 
= P C A B  -pcAB 
= O .  ~~ (47) 

Applying the nilpotency conditions (25), which on the correct space of forms are represented 
as 

s; = 3; = 0 (48) 

Sx(b) = 0 sx (b )  = [ b ,  c x l  (49) 

s x s x  + s x s x  = 0 

it follows that 

so that we have constrained [b, Cx]  = 0 by this choice. We can thus recover, in a very 
natural way, the set of BRS and anti-BRS equations on each gauge group where now the 
matter field constrains on @ arise at the same level as those of the gauge fields. The 
Zinn-Justin auxiliary scalar now appears as a result of this fundamental Higgs-gauge field 
unification rather than as an additional field. To insure the auxiliary nature of j3 we also 
impose the constraint 

Dpj3 = 0 .  (50) 
That j3 should be trivial on space-time is consistent with the notion that it is a connection 
between group manifolds only. (It is tempting to try a more symmetric identification than 
(46) and extend the choice of Baulieu et a1 [ 131 such that 

Sxb = 0 Sx = [b ,  Ex] (51) 

SxbC = [be,  Cx]  SxbC = 0 (52) 

now includes 

=*= ==* 
where b = pB+ pp and bC = j3 j3 + p p  . This would extend the construction of Baulieu 
et a1 [I31 to include bc in such a way that be is a constant of the motion in the anti-ghost 
sector in a complimentary way to b on the ghost sector. However, it is not possible to 
make this identification and keep compatability with the remaining algebra, for example, 
requiring that S ~ C X  = 0. For this reason the choice of (46) is the appropriate one). 

While this is sufficient when resiricted to the gauge fields, the existence of Higgs 
scalars connecting different gauge fields requires independent consideration. This is because 
generalized 2-forms in the construction of Connes' [3-51 will now arise which are scalars in 
the traditional sense. This is just the origin of the Higgs potential in Connes model building 
prescription. However, we now also have j3 and j terms which will contribute. We thus 
expect to generalize our potential, which will take the form 

v(~j3,B) = v(~)+v(~.B)+mixingterms. (53) 
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The mixing terms demand that f i  and $ remain the fundamental auxiliary fields, rather than 
b. Elimination of and $ will now have a dramatic effect, introducing additional interaction 
tems.between the Higgs, ghost and gauge fields. The actual form taken by the interaction 
terms will be very much model-dependent and so will be investigated in specific examples 
currently in preparation. The important consequence of this is that we have extended the 
notion of gauge fixing into the Higgs sector, consistent with gauge-Higgs field unification. 

6. The quantum Lagrangian 

We now wish to consider the most general allowable BRS and  anti-^^^ invariant Lagrangian 
from which the BRSht i -BRS admissable gauges may be considered. Again, restricting 
ourselves at first to the underlying algebra will greatly simplify this construction. We know 
that the form of our Higgs potential before elimination of the auxiliary terms derives from 
the square norm of the curvature. In looking at the quantum Lagrangian we wish to avoid 
the introduction of terms like @' with arbitrary coefficients which are not forbidden by 
B R S / ~ ~ ~ ~ - B R S  invariance but which could spoil the Higgs potential. We therefore choose to 
maintain the action as a functional of the curvature [l]. The simplest such term which can 
be constructed, which is 60 and 6~ invariant and of dimension 4, is 

(54) 
To be physical we require the ghost number to be zero, insuring that we ate in the correct 
cohomology class. Assigning a ghost number of 1, say, to 6~ and -1 to 80 we see that 
this restriction reduces (54) to 

6Q60@ = d Q S Q ( Z 6  + 6'). 

where OJ = xi a'8b' is the usual, classical, connection used in Conned construction [5]. 
Here (z may be introduced as an a rb i t r e  constant, the choice of which corresponds to the 
gauge choice [ 131. Note that these requirements on ghost number and 6~ and 6~ invariance 
are imposed at the well behaved level of the algebra. Representing this on Hilbert space 
will, however, introduce terms with non-zero ghost number and which are not invariant 
under S, and 3,. This results from treating B R S / ~ ~ ~ ~ - B R S  invariance in a unified way on the 
algebra but then separating contributions on the two gauge groups when physical fields are 
constructed. That the physical set of operators is a restricted set of those on the differential 
algebra is a recurring theme in all applications of non-commutative geometry. 

The reason is that 
contributions such as xi a'66Qb' need not vanish due to a lack of cross terms. To represent 
such terms the representation K must~be extended to accommodate our generalized Leibnitz 
rule. We will thus define 

Representing this on Hilbert space now requires some care. 

Z(6Qsa') = (e, [D, P@')ll , ' K(6gsa') = (0, [D, P(a')l) (56) 

(571 
and 

Z(6QAQaa') = [Q, (Q, [D, P(a')l)l 
which now encodes correctly the Leibnitz rule on each copy of space-time and on the matrix 
derivative connecting space-times. 

To extract the physical fields from (55) we note that the action in non-commutative 
geometry which is given by the Dixmier trace can be written equivalently as [6] 

I = d4xTr(tr(zZ(B))) (58) I 
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where 0 is the usual curvature in Connes' construction (0 = So + w'), Tr is taken over the 
matrix structure and t~ is taken over the Clifford algebra. We extend this now to include 
the 'quantum term' 

B E  Hanlon and G C Joshi 

lqmwm = $1 d4xTr(trIrz(O') + J ~ ~ Q ~ Q @ ) ~ o ~ . w ~ ~ )  (59) 

where we write 8' since we must also now accommodate the extended potential (53). We 
need thus consider only those terms which survive under the two trace operations. Note, 
however, that we will take the same liberty as Baulieu er al [I31 and retain the fields Cx 
and as well as SX and SX as differential forms. To this extent we only take tr over the 
four-dimensional space-time Clifford algebra. In terms of Dixmier traces we see then that 
the action need only be defined with respect to the classical K-cycle of continuous functions 
on space-time tensored with a discrete internal space. There is, therefore, no problem with 
( d ,  m) summability, consistent with imposing the Cartan-Maurer condition. 

The simplest expression to calculate is 1r(dp8@) for which we find (retaining the Sx 
and 3.y invariant terms) 

~ 

SASA(M+* ++M*) + s B S B ( M * @  +@'MM) (60) 
where since we require global gauge invariance terms of the form S A S A ( ~ ~ A @ )  have been 
excluded. Similarly for x ( S Q S ~ O ~ )  the result is 

SASA(A; + +@*) + SBSB(BZ + @*@I (61) 
where we again note that since we require global gauge invariance @+* and $A# must 
transform as singlets. Consequently,  SA^^(+@*) = S B $ B ( ~ + )  = 0. Greater care must be 
taken in determining the final term to avoid contributions with non-zero ghost number. 
Retaining the SX and invariant terms we find, after lengthy algebra, the relevant 
contributions for 7C(8Q6fi[cij (a'dpb'ai80bj -k Ui6pbiaj8~b')]):  

sASA(CACA + C A C A  + + + s~SB(C~CB + C B C ~  + p' j  + pp) (62) 
where we eliminate the j3 terms analogously to the 6's in (61). The removal of these terms is 
consitent with Hermiticity of the 'quantum term' as implied by (46). In all these expressions 
the auxiliary fields associated with the representation IT 'have been suppressed. Being at 
fourth order, such auxiliary contributions are tediously complex so there is little utility in 
expressing their general form. We see then that we are left with only the most obviously S,y 
and 3, invariant terms as physical contributions. Clearly, a projection onto the correct space 
of forms will involve greater mathematical rigour and complexity. Nevertheless, we would 
expect the general form of the above expressions to be maintained since the requirement 
of global gauge invariance has removed terms dependent on @ and p for which we would 
expect non-hivial contributions. 

We can thus recover, in a very natural way, the quantum term of Baulieu eta1 [13] in the 
case of symmetric gauges. Rather than an exhaustive construction of all possible allowable 
polynomials of the fields we can develop the same result directly from our generalized 
curvature, consistently including the contribution from the Higgs sector. 

7. Application to anomalies 

The constructions of the previous sections demonstrate that significant simplifications 
in the construction of field-theoretic models arise by first reshicting considerations to 
the underlying universal differential algebra. This highlights the quantity of relevant 
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information contained at this level of the model building prescription. Only when a particular 
representation, R, is chosen do we encounter complications. This is a reflection of the wide 
and as yet non-unique choice of representation on the Hilbert space of spinors. 

Using this observation we can direct our attention to the important topic of anomalies. 
Since anomaly cancellations are dependent on the choice of femionic representations and 
not fermion masses we see that we require only that information which is entered at the 
level of the algebra A,. Strictly, we should be dealing with a local BRS operator but this 
extension is not considered to be problematic. 

It is known that consistency conditions for anomalies appear as cohomological equations 
for the BRS operator (we will neglect the anti-BRS operator for simplicity). In this regard 
we will utilize the trivial cohomological structures on the universal differential algebra to 
simplify considerations for otherwise complex models involving multiple gauge fields, Higgs 
scalars, etc. We will follow the prescription of Dubois-Wolette et al [I91 for constructing 
solutions of the Wess-Zumino consistency conditions [ZO]. We consider the free-graded 
commutative algebra generated by 

A = Xa'Sb '  F = S A + A ~  
i 

which we denote as C. A and x comprise the generalized potential 

d = E a i @  + 8p)b' = A + x . (64) 
i 

The generalized curvature is then 

P = (6 +SQ)A + 1 2 .  (65) 
Imposing the Maurer-Cartan condition at the level of the universal differential algebra it 
follows that 

S Q X  = -x2 SQA ==-@ - A X  - X A  (66) 
and therefore SQF = [ F ,  X I .  Note that as before, when considering the quantum Lagrangian, 
this BRS algebra is not equivalent to that derived on the physical Hilbert space. This follows 
since the above relations (66) imply that those terms dependent on p will not appear in 
the generalized potential (53). From this we see that the auxiliary nature of p has been 
made manifest. Consistent with Connes' model building prescription p remains as part of 
the generalized potential due only to the nature of the representation on Hilbert space. In 
this context, the removal of p via the equations of motion is motivated by purely algebraic 
considerations and not only phenomenological consistency. This Zinn-Justin scalar has thus 
been reduced to one of several auxiliary terms inherent in the model building scheme. 

Using A,SA,  x and S x  as a free system of generators of C it.follows that the algebra 
(C, 6) is a contractable differential algebra; Similarly, A ,  x .  (8 + SQ)A,  (8 + S Q ) X  is a free 
system of generators of C so (C, 6 + S Q )  is contractable. As can be seen from the BRS 
relations (66) the cohomology of SQ is not trivial. It follows that (C, S Q )  is the skew tensor 
product of the contractable algebra A ,  SQA and the algebra x , F .  The SQ cohomology thus 
reduces to that on x and F .  From this it can be shown that the 6p cohomology reduces 
to sets of invariant polynomials in these fields. Thus anomalies and Schwinger terms are 
obtained kom such invariants [19]. 

This type of analysis remains faithful for simple gauge theories. But we now have 
the additional step of identifying with complex models involving multiple gauge fields and 
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Higgs scalars via the representation z. On the physical space such a simple cohomological 
treatment need not hold. However, as we saw in the previous section, representations of 
appropriate polynomial functions constructed on the universal differential algebra compactly 
describe all relevant polynomial contributions, including scalar contributions, on the physical 
space. There was no need to exhaustively explore all possible polynomial functions. 
Similarly, representing invariant polynomial functions pertaining to anomalies, which 
are simply described on the universal differential algebra, will encode all the relevant 
information on these contributions on the physical space without the need for an arbitrary 
exhaustive search; the relevant physical terms being extracted as before by such requirements 
as Sx or global gauge invariance. This provides an important tool for probing complicated 
models. We would still expect model dependency in this approach as the 6~ cohomology 
is dependent on the number of U(1) factors in the model in question. 

8. Some comments on auxiliary terms 

The astute reader will observe that the gauge terms appearing in (61) are normally considered 
as auxiliary in Connes’ construction [5] but are retained in the ‘quantum’ sector of OUI action 
(59). This is not inconsistent when we examine the nature of these auxiliary terms more 
closely. 

That problems arising from such contributions can be seen if one considers the space 
of generalized 2-forms in the classical case [7] 

fiz(d,) = [fZ2(F) @ p(d) +F@ hZ(d)l @ @ &’(a) (67) 
where we recall that d, = 3 @ d. corresponding to the product geometry of smooth 
functions on spacetime and a discrete internal space. The first term gives the usual gauge 
field curvature tensor, the second corresponds to the square root of the Higgs potential and 
the last is responsible for the covariant derivative on the matter fields. The addition in 
brackets is not direct because space-time 0-forms and 2-forms mix. Consequently, in the 
tensor product geometry, the Eggs  potential contributions must be disentangled from the 
0-forms of the gauge sector. This is the fundamental reason for the need of at least two 
fennionic families to ensure non-trivial projections onto the correct orthocomplement. We 
can write down these 0-form contributions explicitly in, say, the ‘A’ gauge field sector, 
which are 161: 

A ~ A ;  + a”A, + A;. (68) 

The first appears when one calculates z(Ci Sa’Sb’) as an element which cannot be expressed 
in terms of the physical fields while the remaining two arise from the Clifford algebra, e.g. 

(69) 
where [ y ” ,  y ” )  = -26”” in four-dimensional Euclidean space. Thus P A ,  is associated 
with a(@) while similarly A; derives from x(pz).  The important point, however, is 
that since Abg2Af is an arbitrary function the terms of the scalar Higgs potential 
could be absorbed into it. Thus it is this term which is responsible for the need for 
careful consideration on the correct space of forms. The remaining terms are, nevertheless, 
unsavoury, implying that space-time 2-forms in Connes construction will not correspond to 
our usual notion of 2-form unless eliminated. 

This brings us now to the ‘quantum term’ x ( G Q S & ~ ) , , ~ ~ , . ,  of our action. Unlike in 
(58), this term is not quadratic in the curvature. Immediately this implies that terms such as 

i 

gy”A, = I/%’”(a,A, - &Ap) - a”A, 
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A i  will play a more fundamental role, being Lorentz scalars. It seems natural then to treat 
~ ~ ( S Q S ~ O ) , ~ ~ , ,  independently to the classical action, a point emphasized by it being 
dependent on S, and &, unlike the classical case. We thus confront the interesting point 
of treating as auxiliary the fields P A ,  + A i  whose elements are well defined in terms of 
known fields and do not otherwise adversely affect the action. In our context they find a role 
which need not violate our usual notion of differential forms when treated independently 
from them. This notion is consistent with the imposition of the Maurerqartan form in 
deriving the BRS/ZUI~~-BRS constraints which can be considered as a 'horizontality condition'. 
The 'quantum' contribution then comes from the vertical, orthogonal sector generated by 
non-vanishing terms in the BRShti-BRS generators. An interesting implication of this is 
that the space-time Dirac operator in the vertical sector will no longer be nilpotent, implying 
that higher-order terms will be unphysical. 

Turning to the BRS and anti-BRS region we would expect generalized 2-forms to 
encounter the same problems as the Dirac operator, D, as expressed in (67). Since p-type 
terms will contribute to the scalar potential these, as with the @ scalars, will necessarily 
carny information pertaining to several fermionic families. Consistency demands that these 
family mixing mamces be identical for q5 and 8. In addition to this we must also account 
for the nilpotency conditions encoded in (25) between the operators S, SQ and 60. That is, 
there will exist forms for which, for example, 

?r(SQGQU'i + SpSea') # 0 .  (70) 
This simply tells us that auxiliary terms will arise in accordance with mixing terms, as 
expressed in the potential (53). (Note that, by the definition of our generalized Dirac 
operator 5 (31). there will be no such problem between ("a) and Q or 0 so that in 
this case only the connection between space-times and group manifolds will yield new 
contributions to J .  This, however, will not be the case between Q and 0. Evidence for 
additional structure introduced by Q and 0 on the discrete space was demonstrated when 
it became obvious that many new auxiliary terms were arising due to the existence of < 
and g, which would otherwise vanish if we imposed e = 8.) The model dependency of the 
scalar potential is thus further emphasized by these considerations. 

9. Conclusion 

By utilizing the underlying mathematical approach of Connes construction we have 
compactly described the B R S / ~ ~ ~ - B R S  structure of complicated models involving multiple 
gauge and Higgs fields. Furthermore, we have proposed a natural origin to the Zinn- 
Justin auxiliary scalar consistent with the algebraic structure of non-commutative geometry. 
That non-commutative geometry is indeed a natural arena for this type of investigation is 
emphasized when it is recalled that fermionic fields, having a canonical dimension of 2, 
will not contribute. to the 'quantum term' of the action. The fermionic sector can, as in the 
classical case, be .introduced in a mvial way. 

We have not explicitly considered the possibility of assymetric gauge choices 
corresponding to breaking hermiticity, as implied by (46). Actually, we note that the 
potential (53) implies that this hermiticity condition is already broken. Terms do arise in 
the calculation of ~(SQSQO), ghostno which a p p w  to fill this role, however, these are not 
3, invariant. This is actually a good result for two reasons: 
(i) such terms are associated with other terms for which zero ghost number fails, 
(ii) to explore the full range of possible gauges a new gauge parameter is required, implying 

the introduction of an additional 'quantum term'. 



2904 

One such possible term which suggests itself is n(6~00) ,~~~,  no, allowing us to maintain 
the action as a functional of the CUNatUIe. This does not obviously introduce BRS/anti-BRS 
invariant terms so that the naturalness of such an expression needs to be tested. 

An interesting point which remains is the interpretation of p. One natural possibility 
is that 5 encodes information on the relative strengths of the group manifolds. That is, we 
have no fixed notion of the relative sizes of these internal spaces. In this sense 6 contains 
information on the dat ive coupling strengths. A topologically more appealing possibility 
is that .$ connects different choices of gauge on the different group manifolds. The true 
nature of this perhaps waits for a full quantum treatment. This is, of course, speculation, 
but signals the possibility of interesting new connibutions for a non-commutative quantum 
field theory. 

B E Hanlon and G C Joshi 
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